
5800 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 26, NO. 12, DECEMBER 2017

Visual Tracking by Sampling in Part Space
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Abstract— In this paper, we present a novel part-based visual
tracking method from the perspective of probability sampling.
Specifically, we represent the target by a part space with two
online learned probabilities to capture the structure of the target.
The proposal distribution memorizes the historical performance
of different parts, and it is used for the first round of part selec-
tion. The acceptance probability validates the specific tracking
stability of each part in a frame, and it determines whether to
accept its vote or to reject it. By doing this, we transform the
complex online part selection problem into a probability learning
one, which is easier to tackle. The observation model of each
part is constructed by an improved supervised descent method
and is learned in an incremental manner. Experimental results
on two benchmarks demonstrate the competitive performance of
our tracker against state-of-the-art methods.

Index Terms— Visual tracking, part space, sampling.

I. INTRODUCTION

G IVEN a specified object in the first frame, the task
of visual tracking is to locate it in the succes-

sive video frames. As a fundamental topic in com-
puter vision, object tracking plays an important role in
numerous applications such as visual surveillance, human-
computer interaction and augmented reality. Despite decades
of studies [1], [35], [41], [46], visual tracking is still a chal-
lenging task due to target appearance variations such as object
deformation, occlusion, illumination changes, motion blur and
background clutters.

For object tracking, local appearance models [5], [7], [8]
are generally more robust than holistic ones [4], [6], since
many challenging factors, e.g., the object deformation and

Manuscript received December 8, 2016; revised April 10, 2017 and
May 25, 2017; accepted August 16, 2017. Date of publication August 25,
2017; date of current version September 15, 2017. This work was sup-
ported in part by the National Natural Science Foundation of China
under Grant 61472036, in part by the National Basic Research Pro-
gram of China (973 Program) under Grant 2013CB328805, and in
part by the Australian Research Council’s Discovery Projects Funding
Scheme under Grant DP150104645. Specialized Fund for Joint Build-
ing Program of the Beijing Municipal Education Commission. The asso-
ciate editor coordinating the review of this manuscript and approv-
ing it for publication was Prof. Ce Zhu. (Corresponding author:
Bo Ma.)

L. Huang, B. Ma, J. Shen, and H. He are with the Beijing Laboratory
of Intelligent Information Technology, School of Computer Science, Beijing
Institute of Technology, Beijing 100081, China (e-mail: bma000@bit.edu.cn;
shenjianbing@bit.edu.cn).

L. Shao is with the School of Computing Sciences, University of East
Anglia, Norwich NR4 7TJ, U.K. (e-mail: ling.shao@ieee.org).

F. Porikli is with the Research School of Engineering, The
Australian National University, Canberra, ACT 0200, Australia (e-mail:
fatih.porikli@anu.edu.au).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TIP.2017.2745204

partial occlusions, can be viewed as local noise or variations.
Numerous local appearance models have been proposed in
recent years and have achieved promising results. Existing
methods can be roughly categorized into the following classes:
sparse representation based methods [7]–[9], [22], segmenta-
tion based methods [5], [26], [29], pooling methods [10], [11]
and part-based methods [12], [20], [44].

Sparse representation based methods work under the
assumption of sparse noise (e.g., partial occlusions and local
background clutter), and represent the target as a sparse com-
bination of templates and noisy pixels [8], [9]. Despite their
effectiveness in handling occlusions and background noise,
they are not suitable for tackling deformable objects, where
the shifted parts will be mistakenly regarded as noise. Seg-
mentation based methods [5] separate the target and the back-
ground into several irregular patches (e.g., superpixels), and
formulate tracking as an online segmentation or patch classi-
fication problem. The flexibility of these methods makes them
handle partial occlusions and object deformation robustly.
However, it is still difficult for them to obtain accurate bound-
ing boxes. Besides, the segmented patches are not uniform
in size, which makes them difficult to generalize. Pooling
methods [10], [11], [43] obtain local patches from the target
by performing sliding windows on it, and represent the target
with pooled features of local descriptors. These methods
can decrease the impact of local noise. Nevertheless, when
variations of large areas exist, such as object deformation and
severe occlusions, the noisy blocks will have negative impact
on target locating.

When an object deforms or suffers from occlusions, its
holistic appearance changes a lot, but part of its local
appearance remains identifiable. Based on this idea, part-
based models have been introduced in many computer vision
tasks [12], [14]–[17], [44]. In object detection [45], [47],
deformable part models (DPM) [14] has been proposed and
achieved state-of-the-art performance. Subsequently, it attracts
popularity and numerous improvements to DPM have been
presented [15]–[17]. In visual object tracking, part-based mod-
els have also been proposed to deal with target deformation
and partial occlusions [12], [20], [44], [48]. Yao et al. [12]
presented a part-based tracking method with online latent
structured learning. This work can be viewed as an online
extension of DPM in visual tracking. In [44], a part-based
tracking method with cascaded regression was proposed,
which exploits the spatial constraints between parts to learn the
intrinsic shape of an object. Lu et al. [20] proposed an online
tracking-learning-parsing framework that utilizes an and-or
graph to capture the construction of objects.
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Fig. 1. Illustration of the proposed part-based tracking algorithm. A part space of the target is initialized in the first frame according to the proposal
distribution α. Then α is updated in each frame based on the contributions of parts to target locating. We sample parts according to α and track them
independently. Votes of different parts are accepted/rejected according to an acceptance probability β, then the target location is estimated based on the
accepted votes.

Although above trackers have made attempts to apply the
part-based strategy in visual tracking, the part-based methods
for tracking are far less popular than for object detection.
One of the main reasons is the lack of training samples
with the tracking data. For object detection, there are enough
samples for determining the best way of part separation.
However, for object tracking, the only information provided is
the target location in the first frame. It is difficult to determine
how the target is separated with only one sample of an object.
A better way is to learn the separations online. However,
an online part separation model is usually complex and time
consuming.

We propose a new part-based method to solve the above
issues from the perspective of probability sampling. The
overview of our method is illustrated in Fig. 1. We represent
each target by a part space, which contains sufficient regions
to cover most structures of objects, and two online learned
probabilities on it - the proposal distribution α and the
acceptance ratio β. The α represents the historical information
of different parts and is applied on the first round of part
selection, while the β validates the frame specific tracking
stability of each part and determines whether to accept a part’s
vote to the target location or not. Thus, the complex online part
selection problem is transformed into a probability learning
one, which is much easier to solve. The observation model of
each part is constructed by an improved supervised descent
method (SDM) [18], where we incorporate the basic SDM
model with a confidence evaluation scheme for indicating the
reliability of each predicted descent direction. We propose
an incremental cascaded support vector regression (ICSVR)

algorithm for model updating. To recover the unselected parts,
we further present a part relocating scheme. Our source code
will be available online.1

Compared to the existing approaches, the proposed visual
tracking method provides the following contributions:

• We propose a novel part-based method, which represents
each target by a part space and two learned probabilities,
to transform the complex online part selection problem
into a probability learning one.

• An improved supervised descent method (SDM) is pro-
posed to construct the observation model of each part,
which incorporates the basic SDM model with a confi-
dence evaluation scheme for indicating the reliability of
each predicted descent direction.

• To achieve robust visual tracking, we further propose an
incremental cascaded support vector regression (ICSVR)
algorithm for model updating and an unselected relocat-
ing scheme for parts updating.

II. RELATED WORKS

In this section, we briefly review three closely related topics:
part-based models, sampling based tracking methods and the
supervised descent methods.

A. Part-Based Models

Partial occlusions, background noise and object deformation
are some of the most common phenomena in real world

1http://github.com/shenjianbing/partspacetrack



5802 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 26, NO. 12, DECEMBER 2017

videos, and they also cast a challenge for vision tasks such
as object detection, recognition and visual tracking. When
occlusions or deformation occur, the global appearance of
an object may vary largely, but the local appearance usually
remains identifiable. Based on this observation, several notable
part-based methods have been proposed.

One notable work is the deformable part models (DPM) [14]
proposed in the area of object detection. In this method,
objects are represented as discriminatively trained deformable
part models, and the non-convex training problem is solved
by a latent SVM algorithm. Attracted by the performance
and the extensibility of DPM, several extensions and variants
have been proposed in [15]–[17] and [19]. In visual object
tracking, part-based models have also been introduced to deal
with local variations. Yao et al. proposed an online exten-
sion of DPM for tracking non-rigid objects. It represent an
object as a feature vector composed of part feature vectors
and part offsets, and cast tracking as an online latent SVM
learning problem. It shows better performance compared to
its counterpart [4]. Lu et al. presented a tree-structured model
to represent the part configurations and introduced a tracking-
learning-parsing framework to perform online object tracking.
In [49], a multiple part tracking framework was proposed
based on the KCF [6] tracker to achieve real-time performance.

A closely related work to ours is the TRIC algorithm [44].
Both TRIC and our work are part-based tracking models
and construct the observation model based on the supervised
descent method (SDM) [18]. However, the differences between
them are obvious. First, our method aims at learning the best
way of part selection, while TRIC is conducted to build a shape
model for a target and it performs no part selection. Second,
our method tracks each part independently and combine their
results in postprocessing steps. Instead, TRIC locates each part
based on its three adjacent parts. Third, we have improved the
SDM by introducing an confidence evaluation scheme.

B. Sampling Based Tracking Methods

Sampling based methods are widely used when the cost
function is non-convex and when the searching space is
large. Several tracking by sampling methods have been pro-
posed [38], [39] to efficiently optimize for better models.
In [38], different tracking algorithms are decomposed into
four ingredients: appearance and motion models, state rep-
resentation types and observation types. These ingredients are
sampled iteratively by using the Gibbs sampling strategy to
generate several trackers. Then, the accepted state having the
highest posterior likelihood is chosen as the final tracking
result. Hong and Han [39] present an offline tracking method
by reorganizing the sequential video frames in a tree-structured
graph. It finds the optimal tree that minimizes the tracking
costs along the paths from root to leaf nodes by using the
Markov Chain Monte Carlo (MCMC) based sampling method.
Then, a probabilistic test is performed on the tree to determine
whether to accept it or not, and the optimal solution can be
obtained from the accepted trees.

Both the above two approaches and our method treat
tracking as a probability sampling process, and the

proposal/acceptance steps are adopted to obtain the optimal
solution. As compared with their methods by sampling track-
ers or frame organizations, our method regards each tracking
object as a configuration in its part space and searches for an
optimal part configuration by sampling to improve tracking.

C. Supervised Descent Methods

The Supervised Descent Method (SDM) [18], [27] is origi-
nally applied to facial landmark detection. Due to its extensi-
bility, it has been widely applied to many other areas, including
3D pose estimation [25] and visual tracking [44]. Many basic
vision problems can be formulated as a Nonlinear Least
Squares (NLS) problem: minx f (x) = ‖h(x) − φ∗‖2

2, where
φ∗ is a template, x is a state (location, angle, etc.) variable
and h(·) is a feature extractor. Since most feature extractors
h(·) are not twice differentiable, the idea of SDM [18] is to
learn the mapping from features to descent directions by linear
cascaded regressions, instead of calculating the Jacobian and
Hessian matrices in Newton’s method.

Despite the effectiveness of SDM, one of its main draw-
backs is that it only estimates descent directions, and does not
output values on how reliable the estimations are. This paper
addresses the issue of confidence evaluation in SDM.

III. BASIC TRACKER

In the proposed part-based method, each part is tracked
with an independently learned observation model. This section
presents details on the basic tracking approach for each part.

A. Cascaded Regression

In our approach, the observation model for each part is con-
structed based on the supervised descent method (SDM) [18],
which learns the nonlinear projection from features to descent
directions in a cascaded linear manner. Specifically, for a
part located at v = (x, y) ∈ R

2, where (x, y) denotes the
central coordinate, we draw samples {vi }n

i=1 around v to
obtain training data {(�vi ,φi )}, where φi ∈ R

p denotes the
extracted feature of sample i and �vi = v − vi is its offset
to the groundtruth. The SDM learns the projection matrices
{Rk ∈ R

2×p}C
k=1 in a cascaded way by iteratively optimizing

the following C problems [18]:

min
Rk

n∑

i=1

‖�vk
i − Rkφ

k
i ‖2

2 + λ‖Rk‖2
2, (1)

vk+1
i = vk

i + Rkφ
k
i , (2)

where k = 1, · · · ,C denotes the cascade index, v1
i = vi , φk

i is
the feature extracted at vk

i and λ is a regularization parameter
for controlling the model complexity.

In our method, we use the Support Vector Regression (SVR)
algorithm instead of (1) for learning the projections {Rk}C

k=1
for two reasons. First, the support vectors in SVR preserve his-
torical information and can facilitate model updating. As well,
they can also largely avoid the model being deteriorated by
tracking failures. Second, the SVR is less vulnerable to noise,
which largely exists when linear models are used to model
nonlinear relationships. Let r(kj ), j = 1, 2, denotes the j th row
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of Rk , �v(kj )
i denotes the j th entry of �vk

i , and the cascaded
SVR is then formulated as:

min
r(kj),ξ (kj),ξ∗(kj)

1

2
‖r(kj )‖2

2 + η1

n∑

i=1

(ξ
(kj )
i + ξ

∗(kj )
i ),

s.t. (r(kj ) · φk
i )−�v

(kj )
i ≤ ε1 + ξ

(kj )
i ,

�v
(kj )
i − (r(kj ) · φk

i ) ≤ ε1 + ξ
∗(kj )
i ,

ξ
(kj )
i , ξ

∗(kj )
i ≥ 0,

i = 1, · · · , n, k = 1, · · · ,C, (3)

where η1 is a regularization factor, ξ(kj )
i , ξ

∗(kj )
i are slack

variables and ε1 is a pre-set margin. We set ε1 = 5, which
means the allowed prediction bias without punishment is
5 pixels.

B. Confidence Evaluation

Despite the effectiveness of SDM, its main drawback is
the lack of a mechanism for indicating how reliable an
offset prediction is. In this section, we present a confidence
evaluation scheme for SDM.

In the training stage, if one regress iteration pulls a sample
closer to the groundtruth, we say that the sample is more
credible and vice versa. Based on the idea, we propose to
learn an extra set of projection matrices {Qk ∈ R

1×p}C
k=1 for

confidence evaluation. We take the ratio of overlap rates before
and after regression θ k

i = (ok+1
i )2/ok

i (where ok
i denotes the

overlap between vk
i and v) as the label to train {Qk}C

k=1:

min
Qk ,ξ (k),ξ∗(k)

1

2
‖Qk‖2

2 + η2

n∑

i=1

(ξ
(k)
i + ξ

∗(k)
i ),

s.t. Qk · φk
i − θ k

i ≤ ε2 + ξ
(k)
i ,

θ k
i − Qk · φk

i ≤ ε2 + ξ
∗(k)
i

ξ
(k)
i , ξ

∗(k)
i ≥ 0,

i = 1, · · · , n, k = 1, · · · ,C. (4)

We set ε2 = 1, which is comparable with the magnitude of θ k
i .

During testing, with the estimated {θ̂ k
i = Qk · φk

i }C
k=1 for each

sample, the credibility ci is then computed as:

ci =
C∏

k=1

θ̂ k
i , k = 1, · · · ,C. (5)

C. Part Locating

The motion model of our method is based on the particle
filters framework [13]. When locating a part in a new frame,
we sample around its last estimated position v from Gaussian
distribution N (v,
2), where 
2 = diag(r2, r2), to obtain
m candidates {vi ,φi }m

i=1. With the learned cascaded model,
we iteratively pull each sample vi to the estimated part location
from a start state v1

i :

vk+1
i = vk

i + Rkφ
k
i , k = 1, · · · ,C, (6)

After C iterations, we obtain all the estimated states
v̂i = vC+1

i . Intuitively, the most densely voted location is more
likely to be the part location.

In our method, the dominant set algorithm [28] is adopted
to seek for the voting center. The dominant set algorithm
computes the weight wi for each sample by optimizing:

max
w

wTAw,

s.t. w ∈ �, (7)

where � = {w ∈ R
m : w ≥ 0 and eTw = 1}, e ∈ R

m

is a vector of all 1s, A ∈ R
m×m is an affinity matrix with

each entry Aij = exp (−‖v̂i−v̂ j ‖2
2

2σ 2
A

) representing the similarity

between v̂i and v̂ j , σA is a scaling factor. As noted in [28],
σA is set to be the median value of all entries in A. Finally,
the part is located by:

v̂ =
m∑

i=1

wi v̂i . (8)

Taking the sample confidence ci into consideration,
we slightly modify the affinity matrix A as:

A∗
i j = ci · c j · Aij . (9)

The rest of the voting process is the same as described before.

D. Updating Scheme

To adapt the basic model to part appearance variations,
we propose an Incremental Cascaded Support Vector Regres-
sion (ICSVR) algorithm for model updating. To deduce the
updating scheme, we first investigate the relationship between
Support Vector Classification (SVC) and Support Vector
Regression (SVR). With training data {xi , yi }h

i=1, the SVR
problem can be formulated as:

min
w,ξ ,ξ∗

1

2
‖w‖2

2 + η

h∑

i=1

(ξi + ξ∗
i ),

s.t. (w · xi )− yi ≤ ε + ξi ,

yi − (w · xi) ≤ ε + ξ∗
i ,

ξi , ξ
∗
i ≥ 0, i = 1, · · · , h, (10)

where η is a regularization parameter, ε is a pre-set margin
and ξi , ξ

∗
i are slack variables.

The above problem is equivalent to a Support Vector
Classification model formulated on the modified training data
{(zi , 1)}h

i=1 and {(zi ,−1)}2h
i=h+1, where zi = (xT

i , yi + ε)T for
i = 1, · · · , h and zi = (xT

i , yi − ε)T for i = h + 1, · · · , 2h:

min
w,ξ

1

2
‖w‖2

2 + η

2h∑

i=1

ξi ,

s.t. (w · zi ) ≥ 1 − ξi , i = 1, · · · , h,

−(w · zi ) ≥ 1 − ξi , i = h + 1, · · · , 2h,

ξi ≥ 0, i = 1, · · · , 2h, (11)

where η is a regularization parameter.
In this case, the online learning of SVR can be implemented

by online SVC algorithms with slightly modified training data.
We use the twin prototypes algorithm [30] in [3] as the SVC
updater in our approach. In the twin prototypes algorithm,
the SVC model can be compactly summarized as a prototype
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set {ψi , ςi , si }B
i=1, where ψi is a feature vector, ςi is a binary

label and si is a counting number that indicates how many
support vectors are represented by this instance. With new data
{z j , γ j }J

j=1, where z j is a feature vector and γ j is a binary
label, the SVC model is updated by minimizing:

min
w,b

1

2
‖w‖2 + K (

1

B

B∑

i=1

si Lh (ςi , ψi ; w)

+ 1

J

J∑

j=1

Lh (z j , γ j ; w)) (12)

where Lh is the hinge loss.
After training, support vectors from the new data are added

to the prototype set with counting number 1. When the size of
the prototype set is larger than a predefined budget B̂ , the pair
of prototype instances of the same label with the mimimal
distance are merged into (ψ∗, ς∗, s∗), where

ψ∗ = si1ψi1 + si2ψi2

si1 + si2
, ς∗ = ςi1 , s∗ = si1 + si2 . (13)

In our experiments, we use B̂ = 80 as the budget and K = 100
for weighting the loss term, though we found that our tracking
performance tends to be insensitive to these settings.

Finally, we extend the online SVR to the cascaded version.
After tracking in each frame, we draw samples {�v1

i ,φ
1
i }I

i=1
around the estimated part location v from Gaussian distribution
N (v,
1), where 
1 = diag(r1, r1), to obtain training data for
the first cascade. Then each sample is iteratively updated as:

vk+1
i = vk

i + Rkφ
k
i . (14)

The samples {�vk
i ,φ

k
i }I

i=1, k = 2, · · · ,C are then collected
for the updating of the kth cascade, where �vk

i = v − vk
i .

IV. TRACKING BY SAMPLING IN PART SPACE

As described in Section III, the observation model for each
part is represented by a set of projection matrices {Rk,Qk}C

k=1.
This section presents details on the online selection and updat-
ing of these parts, and how to use them for target locating.

A. Part Space

In our implementation, the initial parts are automatically
generated based on the bounding box (x, y,width, height) of
the tracking target in the first frame. Specifically, we separate
the bounding box into two parts equally along the long side.
For each part, we perform the same partition process to obtain
another pair. After P iterations, L = ∑P

c=0 2c parts are
obtained. We set P = 2 in our experiments, which generates
L = 7 parts (as illustrated in Fig. 2). These parts make up
the ‘part space’ in our approach. Since the main idea of our
approach is to transform the complex online part selection
problem to a probability learning one, the roughly selected
regions are enough for it to work well. Though, we believe
our method can be easily extended with automatic initial parts,
such as region proposal for the initial bounding boxes. During
tracking, a probability α ∈ R

L on the part space is learned
online to memorize the contributions of different parts, which

Fig. 2. Illustration of part space in sequence Woman. For clarity, we only
show the parts that are no bigger than half of the object size. Boxes in blue
and yellow denote parts of different sizes. The red boxes denote the tracking
results. (a) Part space in frame #16. (b) Part space in frame #70. (c) Part space
in frame #128. Due to occlusion, the bottom blue and yellow parts drift away
from the target. (d) The occluded parts are relocated in frame #168.

is served as a proposal distribution and
∑L

l=1 αl = 1. When
locating the target, we first sample Lα = 5 parts from the part
space according to α without replacement, and then track each
one independently with its observation model.

After tracking, the confidences for different parts are
obtained and normalized to calculate the acceptance ratio
β ∈ R

L where βl ∈ [0, 1]. The β examines the tracking result
of each part in the current frame and determines whether to
accept its vote to the target location.

With the accepted parts, the target is located with their votes
by using the dominant set algorithm. The online learning of
probabilities α and β and the relocating of unaccepted parts
are described in the following sections.

B. Part Selection

1) Proposal Distribution: The proposal distribution α ∈ R
L

evaluates the contributions of different parts over time and
is used for the first round of part selection. Denote ŝ as the
estimated target location in a frame and ŝl , l = 1, · · · , L as
the votes from parts. We define the contribution gl of a part
to target locating as:

gl = exp (−‖ŝl − ŝ‖2
2

2(σ1)2
), (15)

where σ1 is the scaling factor and is set to 4 pixels, which is
comparable with the allowed prediction bias.

The normalized contribution vector ḡ is calculated as: ḡl =
gl∑L

l=1 gl
so that

∑L
l=1 ḡl = 1. The initial α(1) is set as the

normalized part areas:

α
(1)
l = Sl∑L

l=1 Sl
, (16)
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Algorithm 1 The Proposed TPS Tracker

where Sl denotes the area of part l and the superscript (1)
denotes the frame index. This is consistent with the intuition
that larger parts are more recognizable.

Afterwards, the α(t) is updated as:

α(t) = μα(t−1) + (1 − μ)ḡ(t), t = 2, · · · , T, (17)

where ḡ(t) is the contribution vector in the t-th frame and μ
is a forgetting factor fixed at 0.9 in our experiments.

2) Acceptance Probability: The probability βl ∈ [0, 1],
l = 1, · · · , L emphasizes the frame specific tracking perfor-
mance of a part, which is served as an acceptance ratio. The
basic observation is, if a part is being occluded or disturbed
by background noise, its candidate votes (see Section III-C)
will be scattered, otherwise densely distributed. Based
on this idea, we define the voting stability τ for each
part as:

τ =
n∑

i=1

ci exp (−‖v̂i − v̂‖2
2

2(σ2)2
), (18)

where v̂ is the voting center, v̂i denotes the estimation of the
i th candidate (see Section III-C), ci is the confidence value as
described in Section III-B and σ2 is a scaling factor fixed to
3 pixels, which approximates the radius of candidate votes in
dense areas.

Fig. 3. Overall performance of 31 state-of-the-art trackers and our tracker
on OTB-100 and CVPR2013. For clarity, only top 10 trackers are displayed.
(a) Results of OPE on OTB-100. (b) Results of OPE on CVPR2013.

By normalizing the voting stability τ , we obtain the accep-
tance ratio:

β = τ∑n
i=1 ci

. (19)

We denote βl as the acceptance ratio for part l. The vote
of part l on the target location is accepted at the probability
βl . To avoid the situation that no parts are accepted, we set a
minimum number as Lmin = 3. When the number of accepted
parts Lβ is less than Lmin , we repeat the process until it is
larger than Lmin .

C. Locating and Relocating

With Lβ accepted parts (denote the indexes as p1, · · · , pLβ )

and their estimated states {v̂(pi )}Lβ
i=1, their votes to the target

can be obtained with the part offsets:

ŝpi = v̂(pi ) +�v(pi ), (20)

where �v(pi ) = s − v(pi ) denotes the offset between the
target state s and the groundtruth location of part pi , and
it is calculated in the first frame. Similar to Section III-C,
we calculate the weight for each vote wi with the dominant
set algorithm [28]. Finally, the target is located as:

ŝ =
Lβ∑

i=1

wi ŝpi . (21)

For the unaccepted parts (denote the indexes as q1, · · · , qLq

where Lq = L − Lβ ), we need to relocate them according to
the estimated target location in the current frame.

First, we pull these parts to the corresponding anchor points
on the target:

v(qi )
0 = ŝ −�v(qi ), i = 1, · · · , Lq . (22)



5806 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 26, NO. 12, DECEMBER 2017

Fig. 4. The success plots of videos with different attributes on OTB-100. The number in the title indicates the number of sequences.

Then, for each part, starting from v(qi )
0 , we locate it with

its observation model as described in Section III-C to obtain
the estimated state ṽ(qi ). Denote ρi = ‖v(qi )

0 − v̂(qi )‖2
2 as the

Euclidean distance between v(qi )
0 and ṽ(qi ). We set the final

relocated part state as:

v̂(qi ) =
{

ṽ(qi ) ρi ≤ ζ,

v(qi )
0 , ρi > ζ,

where ζ is a threshold setting to 15 pixels in our experiments.
Algorithm 1 summarizes our tracking method in part space.

V. EXPERIMENTS

We abbreviate our method as TPS, which is short for
Tracking by sampling in Part Space. To demonstrate the
effectiveness of the proposed method, the TPS is eval-
uated on two popular benchmarks: OTB-100 [31] with
100 sequences and CVPR2013 [1], which is a subset contain-
ing 51 challenging sequences, and compared with 31 trackers,
28 of which are recommended by [1] including Struck [4],
Sparsity-based Collaborative Model (SCM) [7], Tracking-
Learning-Detection (TLD) [32], Visual Tracking Decomposi-
tion (VTD) [33] and Compressive Tracking (CT) [34], while
Discriminative Correlation Filters (DCF) [36], Kernelized
Correlation Filters (KCF) [6], Discriminative Scale Space
Tracker (DSST) [37], Transfer learning tracker with Gaussian
Processes Regression (TGPR) [40] and Convolutional Network
Tracking (CNT) [2] are recent state-of-the-art trackers, and
Tracking by Regression with Incrementally Learned Cas-
cades (TRIC) [44] is a part-based tracking method.

A. Implementation Details

Sampled image patches for each part are converted to
grayscale and normalized to 32 × 32, and then the improved
HOG feature [14] is extracted on it with bin width 4. For
simplicity, we only estimate the target’s central coordinates
s = {x, y} and assume the scale and angle of the target stay the
same throughout the tracking process. In training and updating

stage, we sample 200 images around the estimated position for
each part with sample radius r1 = 8. We train C = 3 cascades
of SVR with these samples. The regularization parameters are
set as η1 = 0.001, η2 = 0.001. ε1 and ε2 are fixed to 5 and 1
respectively, while σ1 and σ2 are fixed to 4 and 3 respectively.
In the testing stage, 400 images are sampled for each part
around its last estimated location with sample radius r2 = 20.
The model updating for each part is performed each time when
T = 5 frames of training data are collected, while the updating
of the probabilities α and β is performed in every frame.
All the above parameters are fixed for fair comparison.

B. Quantitative Evaluation
1) Evaluation Criteria: The precision and success plots [1]

are applied to evaluate the robustness of trackers. The preci-
sion plot indicates the percentage of frames whose estimated
location is within the given threshold distance to the ground
truth. The success plot demonstrates the ratios of successful
frames whose overlap rate is larger than the given threshold.
The precision score is given by the score on a selected
threshold (e.g., 20 pixels). The success score is evaluated by
the area under curve (AUC) of each tracker. For clarity, only
top 10 trackers are illustrated on both plots.

2) Overall Performance: The overall performances of the
31 trackers and our tracker are shown in Fig. 3. For the
precision plot, the results at error threshold of 20 pixels
are used for ranking, and for the success plot we use AUC
scores to rank the trackers. The performance score of each
tracker is shown in the legend of Fig. 3. For OTB-100, in the
precision plot, our tracker outperforms DSST by 1% and
outperforms KCF by 1.4%. In the success plot, our tracker
performs 2.7% better than KCF and 3% better than DCF.
For CVPR2013 dataset, our tracker outperforms DSST by
8.4% and outperforms KCF by 8.8% in terms of the precision
score. In the success plot, our tracker achieves the AUC
of 0.567, which performs 4% better than CNT and 10.8%
better than KCF. Overall, our tracker outperforms the state-
of-the-art trackers in terms of location accuracy and overlap
precision.



HUANG et al.: VISUAL TRACKING BY SAMPLING IN PART SPACE 5807

Fig. 5. Precision plots of videos with different attributes on OTB-100. The number in the title indicates the number of sequences.

TABLE I

PER-VIDEO PRECISION SCORES ON 14 SELECTED SEQUENCES. THE BEST RESULTS ARE REPORTED IN BOLD

TABLE II

PER-VIDEO SUCCESS SCORES ON 14 SELECTED SEQUENCES. THE BEST RESULTS ARE REPORTED IN BOLD

TABLE III

PERFORMANCE IMPROVEMENT OF DIFFERENT SUBSETS IN TERMS OF PRECISION AND SUCCESS

SCORES COMPARED WITH THE SECOND-RANKED TRACKERS

3) Attribute-Based Performance: Several factors can affect
the performance of an object tracker. In the OTB-100 dataset,
the 100 sequences are annotated with different challenging
attributes that may affect tracking performance, such as occlu-
sion, background clutters, object deformation. Fig. 4 and Fig. 5
show the success plots and precision plots of 31 state-of-
the-art trackers and our tracker on 8 different video subsets.
In addition, Table I and Table II also illustrate the perfor-
mance of our tracker and other four state-of-the-art methods
on 14 selected challenging videos. The Box, DragonBaby,
KiteSurf, Panda, Tiger2, Basketball, Football and Soccer are
selected from the Occlusion subset, while the Gym, Panda,
Human9, Skater2, Girl2 and Couple are selected from the

Deformation subset. In addition, the sequences Box, Drag-
onBaby, Gym, Board, Human9, Panda, Skater2, Girl2, Couple
and Soccer also belong to the Scale Variation subset, and the
sequences Basketball, Board, Couple, Football and Soccer also
belong to the Background Clutter subset.

Though our tracker only estimates the center location and
does not predict scales, it achieves comparable or even better
results than other methods (e.g. DSST) on the Scale Variations
subset. This is because the large correlation among different
attributes. As shown in Table I and Table II, the sequences
Box, DragonBaby, Human9, Girl2, Panda, Skater2 and Cou-
ple belong to the Scale Variations subset, but the objects
also suffer from occlusions, background clutter and object
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Fig. 6. From top to bottom are representative results of trackers on sequences David3, Jogging-1 and Subway, where objects are heavily occluded.

deformation. Though previous trackers can estimate scales
very well, they fail to track these clips, while our method per-
forms much better in tracking occluded or deformed objects.

To better illustrate the pros and cons of our method, we rank
the improvement of performance in different subsets according
to the precision scores and list them in Table III. As shown
in Table III, the main improvement of performance come from
the Occlusions, Out-of-View, Out-of-plane Rotation, Back-
ground Clutter, Illumination Variation and Deformation sub-
sets. Our tracker achieves better performance on the Occlusion
and Deformation subsets, which validates the effectiveness
of the proposed part-based model. It effectively selects and
combines different parts to obtain stable results. The good
performance of our method on the Out-of-view, Out-of-plane
Rotation and Background Clutter subsets could be attributed
to our voting process. It considers location estimations from
multiple surrounded candidates and locates the target with
the combination of these votes. It also can successfully
locate the target when some of the surrounded candidates are
invisible (e.g., occluded or out-of-view) or interrupted by the
background noise.

C. Qualitative Evaluation

Now we present a qualitative evaluation of the tracking
results. 12 representative sequences with different challenges
are selected from the 100 sequences in OTB-100. The three
dominant challenges of these sequences are occlusion, object
deformation, and illumination variation. Fig. 6 - Fig. 8 show
some screenshots of the tracking results of our tracker and
some competitive state-of-the art trackers.

1) Occlusion: Occlusion is one of the most critical chal-
lenges in visual tracking. Fig. 6 illustrates tracking results
on three representative sequences (David3, Jogging-1 and
Subway) where objects are severely or long-term occluded.
In the David3 sequence, David is completely occluded several

times by the pole and the tree (e.g., #28, #91). TLD, SCM and
Struck fail to re-detect the target when David reappears in the
screen. Our method, KCF, CNT and DSST achieve favorable
results. In the Jogging-1 sequence, the left girl is occluded
fully by the telegraph pole (e.g., #68, #78). Only our method,
CNT, TGPR and TLD can track the target successfully (e.g.,
#89, #152, #176). In sequence Subway, a person is occluded
by other people in some frames (e.g., #41, #96). Only TPS,
TGPR, SCM and KCF are able to track the target stably. Note
that KCF updates with an exponential decay factor. Thus it can
deal with short-term occlusions while long-term occlusions
make it drift to the background. The superior performance of
our method could be attributed to the part-based model. The
proposal distribution helps selecting stable parts for tracking
while the acceptance ratio avoids the bounding box drifting to
the occluded parts.

2) Object Deformation: In Fig. 7, sequences Panda and
Singer2 are selected to show the robustness of trackers
against non-rigid object deformation. The target in the Singer2
sequence has significant appearance variations due to illumi-
nation changes and non-rigid body deformation. Struck, SCM,
TGPR and TLD fail to track the target (e.g., #22, #78, #135).
Our method performs well at all frames. The target in the
Panda sequence walks around the screen all the time, which
makes it undergo both deformation and occlusion. KCF, TLD
and SCM lose the target in the tracking process (e.g., #315,
#590, #686). The holistic models, i.e., Struck, TLD, KCF and
TGPR have difficulty in tracking non-rigid objects while SCM
uses a weighted updating strategy, making it prone to drift
to the background. Our method performs well in the whole
sequence for two reasons. The part-based models are skilled
in tracking non-rigid objects while the proposed online SVR
provides an elegant way to incorporate previous model with
new observations.

3) Illumination Variation: Fig. 8 shows tracking results on
two challenging clips (Sylvester and Skating1), where objects
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Fig. 7. From top to bottom are representative results on sequences Singer2 and Panda. Object deformation is the main challenge of these sequences.

Fig. 8. From top to bottom are representative results on sequences Sylvester and Skating1, where objects suffer from illumination variations.

undergo significant illumination changes. In the Sylvester
sequence, a doll moves quickly under the light. Despite
heavy illumination variations in some frames (e.g., #528,
#612, #703), our method is able to track the target well.
Struck, TLD, CNT and KCF lose the target when sudden
illumination changes and fast motion occur (e.g., #1003,
#1092, #1333). When the target glides on the ice in sequence
Skating1, it undergoes severe deformation and dramatic light
changes (e.g., #68, #182). Only our method, CNT, SCM and
KCF can track the target from the beginning to the end. The
promising tracking results of our tracker on the illumination
subset could be attributed to the improved HOG feature [14]
used in our method, which is invariant to local illumination
variations.

VI. CONCLUSIONS

We have presented a part-based tracking method from the
perspective of probability sampling. Our tracking model is
constructed by a triplet: a part space and two probabilities
– the proposal distribution and the acceptance probability on
it. The proposal distribution is learned online to capture the
structure and appearance of the target, while the acceptance
probability is calculated to determine the credibility of the
tracking result of each part. For learning and updating the
appearance model of each part online, we have developed
an incremental cascaded support vector regression algorithm.
Three components are united for the construction of the obser-
vation model for robustly tracking against local appearance
variations. Experimental results on two recent benchmarks
have demonstrated the superior performance of our method.

REFERENCES

[1] Y. Wu, J. Lim, and M.-H. Yang, “Online object tracking: A bench-
mark,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Jun. 2013,
pp. 2411–2418.

[2] K. Zhang, Q. Liu, Y. Wu, and M.-H. Yang, “Robust visual tracking via
convolutional networks without training,” IEEE Trans. Image Process.,
vol. 25, no. 4, pp. 1779–1792, Apr. 2016.

[3] J. Zhang, S. Ma, and S. Sclaroff, “MEEM: Robust tracking via multiple
experts using entropy minimization,” in Proc. Eur. Conf. Comput. Vis.,
2014, pp. 188–203.

[4] S. Hare, A. Saffari, and P. H. S. Torr, “Struck: Structured output
tracking with kernels,” in Proc. IEEE Int. Conf. Comput. Vis., Nov. 2011,
pp. 263–270.

[5] F. Yang, H. Lu, and M.-H. Yang, “Robust superpixel tracking,” IEEE
Trans. Image Process., vol. 23, no. 4, pp. 1639–1651, Apr. 2014.

[6] J. F. Henriques, R. Caseiro, P. Martins, and J. Batista, “High-speed
tracking with kernelized correlation filters,” IEEE Trans. Pattern Anal.
Mach. Intell., vol. 37, no. 3, pp. 583–596, Mar. 2015.

[7] W. Zhong, H. Lu, and M.-H. Yang, “Robust object tracking via sparsity-
based collaborative model,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit., Jun. 2012, pp. 1838–1845.

[8] X. Mei and H. Ling, “Robust visual tracking using �1 minimization,”
in Proc. IEEE Int. Conf. Comput. Vis., Sep. 2009, pp. 1436–1443.

[9] T. Zhang, B. Ghanem, S. Liu, and N. Ahuja, “Robust visual tracking via
multi-task sparse learning,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit., Jun. 2012, pp. 2042–2049.

[10] Q. Wang, F. Chen, J. Yang, W. Xu, and M.-H. Yang, “Transferring visual
prior for online object tracking,” IEEE Trans. Image Process., vol. 21,
no. 7, pp. 3296–3305, Jul. 2012.

[11] B. Ma, L. Huang, J. Shen, and L. Shao, “Discriminative tracking using
tensor pooling,” IEEE Trans. Cybern., vol. 46, no. 11, pp. 2411–2422,
Nov. 2015.

[12] R. Yao, Q. Shi, C. Shen, Y. Zhang, and A. van den Hengel, “Part-based
visual tracking with online latent structural learning,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit., Jun. 2013, pp. 2363–2370.

[13] A. Smith, A. Doucet, N. de Freitas, and N. Gordon, Sequential Monte
Carlo Methods in Practice. New York, NY, USA: Springer, 2013.



5810 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 26, NO. 12, DECEMBER 2017

[14] P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ramanan,
“Object detection with discriminatively trained part-based models,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 32, no. 9, pp. 1627–1645,
Sep. 2010.

[15] P. F. Felzenszwalb, R. B. Girshick, and D. McAllester, “Cascade object
detection with deformable part models,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit., Jun. 2010, pp. 2241–2248.

[16] H. Azizpour and I. Laptev, “Object detection using strongly-supervised
deformable part models,” in Proc. Eur. Conf. Comput. Vis., 2012,
pp. 836–849.

[17] Y. Tian, R. Sukthankar, and M. Shah, “Spatiotemporal deformable part
models for action detection,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit., Jun. 2013, pp. 2642–2649.

[18] X. Xiong and F. de la Torre, “Supervised descent method and its
applications to face alignment,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., Jun. 2013, pp. 532–539.

[19] X. Song, T. Wu, Y. Jia, and S.-C. Zhu, “Discriminatively trained and-
or tree models for object detection,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., Jun. 2013, pp. 3278–3285.

[20] Y. Lu, T. Wu, and S. C. Zhu, “Online object tracking, learning, and
parsing with and-or graphs,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit., Jun. 2014, pp. 3462–3469.

[21] M. D. Breitenstein, F. Reichlin, B. Leibe, E. Koller-Meier, and
L. Van Gool, “Robust tracking-by-detection using a detector confidence
particle filter,” in Proc. IEEE Int. Conf. Comput. Vis., Sep. 2009,
pp. 1515–1522.

[22] J. Shen, Y. Du, W. Wang, and X. Li, “Lazy random walks for
superpixel segmentation,” IEEE Trans. Image Process., vol. 23, no. 4,
pp. 1451–1462, Apr. 2014.

[23] X. Jia, H. Lu, and M.-H. Yang, “Visual tracking via adaptive structural
local sparse appearance model,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., Jun. 2012, pp. 1822–1829.

[24] D. A. Ross, J. Lim, R.-S. Lin, and M.-H. Yang, “Incremental learning
for robust visual tracking,” Int. J. Comput. Vis., vol. 77, nos. 1–3,
pp. 125–141, 2008.

[25] X. Xiong and F. de la Torre. (2014). “Supervised descent method for
solving nonlinear least squares problems in computer vision.” [Online].
Available: https://arxiv.org/abs/1405.0601

[26] W. Wang, J. Shen, X. Li, and F. Porikli, “Robust video object coseg-
mentation,” IEEE Trans. Image Process., vol. 24, no. 10, pp. 3137–3148,
Oct. 2015.

[27] X. Xiong and F. De la Torre, “Global supervised descent method,” in
Prco. IEEE Conf. Comput. Vis. Pattern Recognit., Jun. 2015, pp. 2664–
2673.

[28] M. Pavan and M. Pelillo, “Dominant sets and pairwise clustering,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 29, no. 1, pp. 167–172, Jan. 2007.

[29] W. Wang, J. Shen, and F. Porikli, “Saliency-aware geodesic video object
segmentation,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
Jun. 2015, pp. 3395–3402.

[30] Z. Wang and S. Vucetic, “Online training on a budget of support vector
machines using twin prototypes,” Statist. Anal. Data Mining, vol. 3,
no. 3, pp. 149–169, Jun. 2010.

[31] Y. Wu, J. Lim, and M. H. Yang, “Object tracking benchmark,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 37, no. 9, pp. 1834–1848,
Sep. 2015.

[32] Z. Kalal, K. Mikolajczyk, and J. Matas, “Tracking-learning-detection,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 34, no. 7, pp. 1409–1422,
Jul. 2012.

[33] J. Kwon and K. M. Lee, “Visual tracking decomposition,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit., Jun. 2010, pp. 1269–1276.

[34] K. Zhang, L. Zhang, and M. H. Yang, “Real-time compressive tracking,”
in Proc. Eur. Conf. Comput. Vis., 2012, pp. 864–877.

[35] B. Ma, L. Huang, J. Shen, L. Shao, M.-H. Yang, and F. Porikli, “Visual
tracking under motion blur,” IEEE Trans. Image Process., vol. 25, no. 12,
pp. 5867–5876, Dec. 2016.

[36] J. F. Henriques, R. Caseiro, P. Martins, and J. Batista, “Exploiting the
circulant structure of tracking-by-detection with kernels,” in Proc. Eur.
Conf. Comput. Vis., 2012, pp. 702–715.

[37] M. Danelljan, G. Häger, F. S. Khan, and M. Felsberg, “Accurate scale
estimation for robust visual tracking,” in Proc. Brit. Mach. Vis. Conf.,
2015, pp. 1–11.

[38] J. Kwon and K. M. Lee, “Tracking by sampling trackers,” in Proc. IEEE
Int. Conf. Comput. Vis., Nov. 2011, pp. 1195–1202.

[39] S. Hong and B. Han, “Visual tracking by sampling tree-structured
graphical models” In Proc. Eur. Conf. Comput. Vis., 2014, pp. 1–16.

[40] J. Gao, H. Ling, W. Hu, and J. Xing, “Transfer learning based visual
tracking with Gaussian processes regression,” in Proc. Eur. Conf.
Comput. Vis., 2014, pp. 188–203.

[41] B. Ma, J. Shen, Y. Liu, H. Hu, L. Shao, and X. Li, “Visual tracking using
strong classifier and structural local sparse descriptors,” IEEE Trans.
Multimedia, vol. 17, no. 10, pp. 1818–1828, Oct. 2015.

[42] Y. Li, J. Zhu, and S. C. Hoi, “Reliable patch trackers: Robust visual
tracking by exploiting reliable patches,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit., Jun. 2015, pp. 353–361.

[43] B. Ma, H. Hu, J. Shen, Y. Liu, and L. Shao, “Generalized pooling for
robust object tracking,” IEEE Trans. Image Process., vol. 25, no. 9,
pp. 4199–4208, Sep. 2016.

[44] X. Wang, M. Valstar, B. Martinez, M. H. Khan, and T. Pridmore, “TRIC-
track: Tracking by regression with incrementally learned cascades,” in
Proc. IEEE Int. Conf. Comput. Vis., Dec. 2015, pp. 4337–4345.

[45] D. Zhang, J. Han, C. Li, J. Wang, and X. Li, “Detection of co-salient
objects by looking deep and wide,” Int. J. Comput. Vis., vol. 120, no. 2,
pp. 215–232, Nov. 2016.

[46] B. Ma, H. Hu, J. Shen, Y. Zhang, and F. Porikli, “Linearization to
nonlinear learning for visual tracking,” in Proc. IEEE Int. Conf. Comput.
Vis., Dec. 2015, pp. 4400–4407.

[47] D. Zhang, J. Han, J. Han, and L. Shao, “Cosaliency detection based on
intrasaliency prior transfer and deep intersaliency mining,” IEEE Trans.
Neural Netw. Learn. Syst., vol. 27, no. 6, pp. 1163–1176, Jun. 2016.

[48] X. Dong, J. Shen, D. Yu, W. Wang, J. Liu, and H. Huang, “Occlusion-
aware real-time object tracking,” IEEE Trans. Multimedia, vol. 19, no. 4,
pp. 763–771, Apr. 2017.

[49] T. Liu, G. Wang, and Q. Yang, “Real-time part-based visual tracking via
adaptive correlation filters,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit., Jun. 2015, pp. 4902–4912.

Lianghua Huang, photograph and biography not available at the time of
publication.

Bo Ma, photograph and biography not available at the time of publication.

Jianbing Shen, photograph and biography not available at the time of
publication.

Hui He, photograph and biography not available at the time of publication.

Ling Shao, photograph and biography not available at the time of publication.

Fatih Porikli, photograph and biography not available at the time of
publication.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Required"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


